Profound blockade of T cell activation requires concomitant inhibition of different class I PI3K isoforms.

نویسندگان

  • Belén Blanco
  • M Carmen Herrero-Sánchez
  • Concepción Rodríguez-Serrano
  • Mercedes Sánchez-Barba
  • M Consuelo Del Cañizo
چکیده

PI3K inhibitors have emerged as potential therapeutic tools for a variety of diseases, and thus, a vast array of compounds with specificity for different PI3K isoforms is being developed. Gaining knowledge about the contribution of the different isoforms to PI3K function will allow selecting the most appropriate inhibitor for each pathology. In this study, we have addressed the effect of PI3K inhibitors with specificity for different class I PI3K isoforms on primary human T cell activation. In particular, we have analyzed proliferation, expression of activation and differentiation markers, apoptosis induction, cytokine secretion and Akt phosphorylation in T cells stimulated in vitro with anti-CD3 and anti-CD28 monoclonal antibodies and cultured with either one of these compounds: p110β-specific inhibitor TGX-221, p110δ-specific inhibitor IC-87114, p110γ inhibitor AS-242525 or pan-class I PI3K inhibitor BKM120. Inhibition of any of the isoforms led to an impairment of T cell activation, mainly of cytokine secretion and granzyme B expression. However, only complete blockade of class I PI3K activity with the pan-class I inhibitor effectively abrogated T cell proliferation. These results indicate that these three p110 isoforms (β, δ and γ) take part in T cell activation, but all of them are dispensable for T cell proliferation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Class IB-phosphatidylinositol 3-kinase (PI3K) deficiency ameliorates IA-PI3K-induced systemic lupus but not T cell invasion.

Class I PI3K catalyzes formation of 3-poly-phosphoinositides. The family is divided into IA isoforms, activated by Tyr kinases and the IB isoform (PI3Kgamma), activated by G protein-coupled receptors. Mutations that affect PI3K are implicated in chronic inflammation, although the differential contribution of each isoform to pathology has not been elucidated. Enhanced activation of class IA-PI3K...

متن کامل

Functional redundancy of PI3K isoforms in conventional T cells provides a selective Treg-targeting strategy through inhibition of PI3K-delta isoform

Introduction Increased regulatory T cell (Treg) numbers within tumors and circulation of cancer patients, observed in early studies, implied their involvement in pathogenesis and disease progression. Also, Treg increase in cancer patients have been associated with reduced survival and inhibition of anti-tumor immune responses. Therefore, decreasing the numbers and/or function of Tregs is needed...

متن کامل

Picking the point of inhibition: a comparative review of PI3K/AKT/mTOR pathway inhibitors.

The frequent activation of the PI3K/AKT/mTOR pathway in cancer, and its crucial role in cell growth and survival, has made it a much desired target for pharmacologic intervention. Following the regulatory approval of the rapamycin analogs everolimus and temsirolimus, recent years have seen an explosion in the number of phosphoinositide 3-kinase (PI3K) pathway inhibitors under clinical investiga...

متن کامل

Functional Redundancy of Class I Phosphoinositide 3-Kinase (PI3K) Isoforms in Signaling Growth Factor-Mediated Human Neutrophil Survival

We have investigated the contribution of individual phosphoinositide 3-kinase (PI3K) Class I isoforms to the regulation of neutrophil survival using (i) a panel of commercially available small molecule isoform-selective PI3K Class I inhibitors, (ii) novel inhibitors, which target single or multiple Class I isoforms (PI3Kα, PI3Kβ, PI3Kδ, and PI3Kγ), and (iii) transgenic mice lacking functional P...

متن کامل

Class II phosphoinositide 3-kinase alpha-isoform regulates Rho, myosin phosphatase and contraction in vascular smooth muscle.

We demonstrated previously that membrane depolarization and excitatory receptor agonists such as noradrenaline induce Ca2+-dependent Rho activation in VSM (vascular smooth muscle), resulting in MP (myosin phosphatase) inhibition through the mechanisms involving Rho kinase-mediated phosphorylation of its regulatory subunit MYPT1. In the present study, we show in de-endothelialized VSM strips tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Immunologic research

دوره 62 2  شماره 

صفحات  -

تاریخ انتشار 2015